Probabilistic estimation of reliability values for frame buildings based on the results of certification taking into account tectonic faults
Probabilistic estimation of reliability values for frame buildings based on the results of certification taking into account tectonic faults

Probabilistic estimation of reliability values for frame buildings based on the results of certification taking into account tectonic faults

DOI: 10.37153/2618-9283-2021-3-49-60

Authors:  

Лапин Владимир Алексеевич Vladimir A. Lapin

Ph.D.in Engineering Science, Director of the Center for Scientific Research of the Construction Industry, Corresponding Member of the NIA of Kazakhstan and IEA, KazRDICA JSC, Almaty, Republic of Kazakhstan


Алдахов Еркин Серикович Yerkin S. Aldakhov
Director of Seismic Resistance and Survey Center, KazRDICA JSC, Almaty, Republic of Kazakhstan

Алдахов Серик Джумаханович Serik D. Aldakhov

Head of the Department of Analysis of the Consequences of Severe Earthquakes, KazRDICA JSC, Almaty, Republic of Kazakhstan


Али Алимжан Alimzhan B.Ali

Engineer, KazRDICA JSC, Almaty, Republic of Kazakhstan



Rubric:     Monitoring and certification of seismic constructions   
Key words: certification, risk, frame building, frame-brick building, reliability, reinforcement, repeatability
Annotation:

With budget funding for two years in 2017-2018, the total certification of the housing stock of multi-apartment buildings was carried out for the first time. A total of 8,171 buildings were entered into the database, of which 1,847 are multi-storey frame buildings of various storeys and

design solutions. It is established that 1628 frame buildings are earthquake-resistant, 59-buildings with the first flexible floor are non-earthquake-resistant and 160-are located in the zone of tectonic

faults on the territory of the city. The hypothesis is accepted that buildings located in the zone of tectonic faults will be destroyed. Under these conditions, quantitative estimates of the failure probability and reliability values for frame buildings of various types were obtained for the first time. The frequency of earthquakes is taken into account according to the current "Map of seismic zoning of the Republic of Kazakhstan". The results of the reliability and failure estimates are used for practical recommendations to reduce the risk and expected losses in possible earthquakes. Total reinforcement of frame buildings with the first flexible floors (59 buildings) is proposed. However, the conditional probability of failure for a group of residential frame buildings will remain non-zero. The method of amplification should be determined based on the results of experimental studies.

Used Books:

1. Zhunusov T.Zh. Osnovy seismostoikosti sooruzhenii. Almaty: RAUAN. 1990. 272 p. (In Russian)

2. Beloslyudtsev V.M. Izuchenie zon razlomov g.Almaty s tseliu ikh stroitelnogo osvoeniia. Issledovanie seismostoikosti sooruzhenii i konstruktsii». 2001, vyp. 20 (30), pp.35-37. (In Russian)

3. Taubaev A.S. Analiticheskaya zapiska o seismicheskom rezhime goroda Almaty i seismostoikosti ego zastroiki. Almaty: KazNIISA, 2008. 28 p. (In Russian)

4. Zhunusov T. Zh., Pak E.F., Lapin V.A. Seismostoikost karkasnykh zdanii. Almaty: Gylym, 1990. 175 p. (In Russian)

5. Lapin V.A., Aldakhov E.S., Aldakhov S.D., Ali A.B. Veroyatnostnaya otsenka velichin nadezhnosti i riska po rezultatam pasportizatsii. Seismostoikoe stroitelstvo. Bezopasnost` sooruzhenii. 2020, no.3, pp.53-68. doi 10.37153/2618-9283-2020-3-53-68 (In Russian)

6. Lapin V.A., Erzhanov S.E. Problemy opredeleniia seismicheskogo riska dlia naselennykh punktov Respubliki Kazakhstan.Vestnik AO KazNIISA. 2016, vyp.7, pp.20-24. (In Russian)

7. Lapin V.A., Erzhanov S.A. Algoritmy opredeleniia seismicheskogo riska dlya zdanii i sooruzhenii v Respublike Kazakhstan. Seismostoikoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2017, no.3, pp.31-39. (In Russian)

8. Aldakhov E.S. Sposoby otsenki seismicheskogo riska primenitel’no k megapolisu goroda Almaty. Vestnik AO KazNIISA. 2019, vyp.7 (95), pp.35-46. (In Russian)

9. Tuleev T.D., Aldakhov S.D., Aldakhov E.S., Bitimbaev A.T., Ali A.B., Tazhikenov A.B., Lobodryga T.D. Pasportizatsia ob’ektov nedvizhimosti goroda Almaty. Vestnik AO KazNIISA. 2018, vyp.2 (78), pp.6-10. (In Russian)

10. Shokbarov E.M. Pasportizacziya zdanij i sooruzhenij goroda Almaty`. – «Vestnik AO KAZNIISA», 2020 g., vy`p.1(1-3).- S.93-96. (In Russian)

11.       Khakimov Sh.A. Nekotorye voprosy otsenki seismicheskogo riska i antiseismicheskogo usileniia zdanii. Issledovanie seismostoikosti sooruzhenii i konstruktsii. 2001, vyp.20 (30), pp.167-184. (In Russian)

12.       Raizer V.D. Teoriia nadezhnosti sooruzhenii. M.: Izdatelstvo «ASV», 2010, 384 p. (In Russian)

13. Seismicheskii risk i inzhenernye resheniia. Sb. statei. Pod red. Lomnitcz U., Rozenblyut E. M.: Nauka, 1981, 86 p. (In Russian)

14.       Dzhinchvelashvili G.A., Dzerzhinskii R.I., Denisenkova N.N. Kolichestvennye otsenki seismicheskogo riska i energeticheskie konczeptsii seismostoikogo stroitelstva. Kompiuternye issledovaniia i modelirovanie. 2018, t.10, no.1, pp.61-76. (In Russian)

15.       Eizenberg Ya.M. Modeli seismicheskogo riska i metodologicheskie problemy planirovaniia meropriyatii po smiagcheniiu seismicheskikh bedstvii. Seismostoikoe stroitel’stvo. Bezopasnost’ sooruzhenii. 2004, no.6, pp.31-37. (In Russian)

16.       Koff G.L., Gusev A.A., Vorob’ev Yu.L., Kozmenko S.N. Otsenka posledstvii chrezvychainykh situatsii. M.: IPK REFIA, 1998, 364 p. (In Russian)

17. Napetvaridze Sh.G. Veroyatnostnye zadachi inzhenernoi seismologii i teorii seismostoikosti. Izdatelstvo «Meczniereba», Tbilisi.1985,110 p. (In Russian)

18.       Liu Xiao-Xiao, Wang Yuan-Sheng A. New Formulation on Seismic Risk Assessment for Reinforced Concrete Structures with Both Random and Bounded Uncertainties. Discrete dynamiks in Nature&Society, 11(1)2018, pp.1-15. DOI:10.1155/2018/5027958.

19.       Fathi-Fazi Reza, Jacques Eric, Cai Zhen, Kadhom Bessam. Development of a preliminary seismic risks creening tool for existing building in Canada. Canadian Journal of Civil Engineering, 2018, vol.45 Issue 9, pp. 717-727. DOI:10.1139/cjce-2017-0504

20.       Bunea Geordina, Doniga Cornel, Atanasiu Gabriela M. Study Concerning the Level of Seismic Risk in lasi Manicipality. Advanced Engineering Forum. 2017, Vol.21, pp. 86-93. DOI 10.4028/www.scientific.net/AEF.21.86.

21.       Ahmad Naveed, Ali Qaisar, Adil Muhammad, Khan Akhtar Naeem. Developing Seismic Risk Prediction Functions for Structures. Shock&Vibration. 4/29/2018, pp.1-22. DOI:10.1155/2018/4186015.

22.       Hare H. John. A different way of thinking about seismic risk: a call for debate. Bulletin of the New Zealand Society for Earthquake Engineering, Sep. 2019, Vol.52 Issue 3, pp.141-149. DOI:10.5459/BNZSEE.52.3.141-149

23.       Lapin V. A., Yerzhanov S. Y., Aldakhov Y. S. (2020) Statistical modeling of a seismic isolation object under random seismic exposure. Journal of Physics: Conference Series 1425 012006 doi:10/1088/1742-6596/1425/1/012006

24. Dyrda V., Kobets A., Bulat I., Lapin V., Lysytsia N., Ahaltsov H., Sokol S. (2019) Vibroseismic protection of heavy mining machines, buildings and structures. E3S Web of Conferences, 109, 00022. http://doi.org/10.1051/e3sconf/201910900022

25. Bulat A. F., Dyrda V. I., Lysytsya M. I., Grebenyuk S. M. (2018) Numerical Simulation of the Stress-Strain State of Thin-Layer Rubber-Metal Vibration Absorber Elements Under Nonlinear Deformation. Strength of Materials, 50(3), pp. 387–395. http://doi.org/10.1007/s11223-018-9982-9

26. Bulat A. F., DyrdaV. I., Grebenyuk S. N., Klimenko M. I. (2019). Determination of effective characteristics of the fibrous viscoelastic composite with transversal and isotropic components. Strength of Materials, 51(2), pp. 183-192. https://doi.org/10.1007/s11223-019-00064-x

Возврат к списку