Probabilistic estimation of reliability and failure values for monolithic buildings based on the results of certification
Probabilistic estimation of reliability and failure values for monolithic buildings based on the results of certification

Probabilistic estimation of reliability and failure values for monolithic buildings based on the results of certification

DOI: 10.37153/2618-9283-2021-4-50-63

Authors:  

Лапин Владимир Алексеевич Vladimir A. Lapin

Ph.D.in Engineering Science, Director of the Center for Scientific Research of the Construction Industry, Corresponding Member of the NIA of Kazakhstan and IEA, KazRDICA JSC, Almaty, Republic of Kazakhstan


Алдахов Еркин Серикович Yerkin S. Aldakhov
Director of Seismic Resistance and Survey Center, KazRDICA JSC, Almaty, Republic of Kazakhstan

Алдахов Серик Джумаханович Serik D. Aldakhov

Head of the Department of Analysis of the Consequences of Severe Earthquakes, KazRDICA JSC, Almaty, Republic of Kazakhstan


Али Алимжан Alimzhan B.Ali

Engineer, KazRDICA JSC, Almaty, Republic of Kazakhstan



Rubric:     Monitoring and certification of seismic constructions   
Key words: certification, risk, monolithic building, building with a core of rigidity, reliability, reinforcement, repeatability
Annotation:
In 2017-2018, the total certification of the housing stock of multi-apartment buildings in Almaty was carried out for the first time. According to the results of certification, a total of 8,171 buildings were entered into the database, of which 1,425 are multi-storey monolithic buildings of various storeys and structural types. It was also revealed that 1305 monolithic buildings are earthquake-resistant, 27 – non-earthquake-resistant and 93 are located in the zone of tectonic faults on the territory of the city. Therefore, it is useful to accept the pessimistic hypothesis that buildings located in the zone of tectonic faults will be destroyed. Under these conditions, quantitative estimates of the failure probability and reliability values for monolithic buildings were obtained for the first time. The high earthquake resistance of monolithic buildings has been confirmed. It is established that when taking into account the influence of tectonic faults, the probability of failure of a monolithic building increases by more than 4 times. The frequency of earthquakes is taken into account according to the current "Map of seismic zoning of the Republic of Kazakhstan". Methods of strengthening monolithic buildings should be individual and determined by the results of experimental studies.
Used Books:
1. Zhunusov T.Zh. Osnovy` sejsmostojkosti sooruzhenij. Almaty: RAUAN, 1990. 272 p. 2. Beloslyudczev V.M. Izuchenie zon razlomov g. Almaty` s czel`yu ikh stroitel`nogo osvoeniya. «Issledovanie sejsmostojkosti sooruzhenij i konstrukczij», 2001, vy`p.20(30), pp.35-37. 3. Taubaev A.S. Analiticheskaya zapiska o sejsmicheskom rezhime goroda Almaty` i sejsmostojkosti ego zastrojki. Almaty`: KazNIISA, 2008. 28 p. 4. Zhunusov T.Zh., Ashimbaev M.U., Bejsenov M.O., Kalamkarov S.I., Rotgauz B.A. Vibraczionny`e ispy`taniya 12-e`tazhnogo zhilogo doma s yadrom zhestkosti. Almaty`, «Sovershenstvovanie metodov rascheta i konstruirovaniya zdanij i sooruzhenij, vozvodimy`kh v sejsmicheskikh rajonakh». Kishinev, 1976, pp.161-169. 5. Lapin V.A., Yerzhanov S.E., Essenberlina D.I. Dynamics of a 16-storey building with a core of rigidity in a local earthquake. – IOP Conference Series: Material Science and Engineering 953 012086 doi:10.1088/1757-899X/953/1/012086 6. Lapin V.A., Yerzhanov S.E., Kassenov K., Makish N., Essenberlina D.I., Kassenov D. Response of the building with a stiffening core during an earthquake of Febrary 02, 2018 in the territory of metropolis - E3S Web OF Conference 217 01008 2020 https.//doi.org/10.1051/e3sconf/202021701008 7. Erzhanov S.E., Lapin V.A., Daugavet V.P., Devyaty`kh A.A. Issledovanie reakczii 16- e`tazhnogo doma s yadrom zhestkosti pri zemletryasenii 9 avgusta 2017 goda. Vestnik AO «KazNIISA».2018, 1(77), pp.19-27. 8. Lapin V.A., Aldakhov E.S., Aldakhov S.D., Ali A.B. Veroyatnostnaya oczenka velichin nadezhnosti i riska po rezul`tatam pasportizaczii. Sejsmostojkoe stroitel`stvo. Bezopasnost` sooruzhenij». 2020, no 3, pp.53-68. doi 10.37153/2618-9283-2020-3-53-68 9. Lapin V.A., Erzhanov S.E. Algoritmy` opredeleniya sejsmicheskogo riska dlya zdanij i sooruzhenij v Respublike Kazakhstan. Sejsmostojkoe stroitel`stvo. Bezopasnost` sooruzhenij». 2017, no.3. - pp.31-39. 10. Aldakhov E.S. Sposoby` oczenki sejsmicheskogo riska primenitel`no k megapolisu goroda Almaty`. Vestnik AO KazNIISA. 2019, vy`p.7 (95), pp.35-46. 11. Tuleev T.D., Aldakhov S.D., Aldakhov E.S., Bitimbaev A.T., Ali A.B., Tazhikenov A.B., Lobodry`ga T.D. Pasportizacziya ob`ektov nedvizhimosti goroda Almaty`. Vestnik AO KazNIISA. 2018, vy`p.2 (78), pp.6-10. 12. Shokbarov E.M. Pasportizacziya zdanij i sooruzhenij goroda Almaty`.Vestnik AO KAZNIISA. 2020, vy`p.1(1-3), pp.93-96. 13. Khakimov Sh.A. Nekotory`e voprosy` oczenki sejsmicheskogo riska i antisejsmicheskogo usileniya zdanij. «Issledovanie sejsmostojkosti sooruzhenij i konstrukczij». 2001, vy`p.20 (30), pp.167-184. 14. Rajzer V.D. Teoriya nadezhnosti sooruzhenij.M.: Izdatel`stvo «ASV», 2010. 384 p. 15. Sejsmicheskij risk i inzhenerny`e resheniya. Sb. statej / Pod red. Lomnitcz U., Rozenblyut E`. M.: Nauka, 1981. 86 p. 16. Dzhinchvelashvili G.A., Dzerzhinskij R.I., Denisenkova N.N. Kolichestvenny`e oczenki sejsmicheskogo riska i e`nergeticheskie konczepczii sejsmostojkogo stroitel`stva. Komp`yuterny`e issledovaniya i modelirovanie. 2018, t.10, no.1, pp.61-76. 17. Eizenberg J.M. Modeli sejsmicheskogo riska i metodologicheskie problemy` planirovaniya meropriyatij po smyagcheniyu sejsmicheskikh bedstvij. Sejsmostojkoe stroitel`stvo. Bezopasnost` sooruzhenij». 2004, no.6, pp.31-37. 18. Koff G.L., Gusev A.A., Vorob`ev Yu.L., Koz`menko S.N. Oczenka posledstvij chrezvy`chajny`kh situaczij. M.:IPK RE`FIA, 1998. 364 p. 19. Napetvaridze Sh.G. Veroyatnostny`e zadachi inzhenernoj sejsmologii i teorii sejsmostojkosti. – Izdatel`stvo «Meczniereba», Tbilisi.1985,110 p. 20. Liu Xiao-Xiao, Wang Yuan-Sheng. A New Formulation on Seismic Risk Assessment for Reinforced Concrete Structures with Both Random and Bounded Uncertainties. – Discrete dynamiсs in Nature&Society, 11(1)2018, pp.1-15. DOI:10.1155/2018/5027958. 21. Fathi-Fazi Reza, Jacques Eric, Cai Zhen, Kadhom Bessam. Development of a preliminary seismic risk screening tool for existing building in Canada. – Canadian Journal of Civil Engineering, 2018, vol.45 Issue 9, pp.717-727. DOI:10.1139/cjce-2017-0504 22. Bunea Geordina, Doniga Cornel, Atanasiu Gabriela M. Study Concerning the Level of Seismic Risk in lasi Manicipality. – Advanced Engineering Forum. 2017, Vol.21, pp.86-93. DOI 10.4028/www.scientific.net/AEF.21.86. 23. Ahmad Naveed, Ali Qaisar, Adil Muhammad, Khan Akhtar Naeem. Developing Seismic Risk Prediction Functions for Structures. – Shock&Vibration. 4/29/2018, pp.1-22. DOI:10.1155/2018/4186015. 24. Hare H. John. A different way of thinking about seismic risk: a call for debate. – Bulletin of the New Zealand Society for Earthquake Engineering, Sep2019, Vol.52 Issue 3, pp.141-149. DOI:10.5459/BNZSEE.52.3.141-149 25. Lapin V.A., Yerzhanov S.E., Aldakhov Y.S. (2020) Statistical modeling of a seismic isolation object under random seismic exposure Journal of Physics: Conference Series 1425 012006 doi:10/1088/1742-6596/1425/1/012006 26. Dyrda V., Kobets A., Bulat I., Lapin V., Lysytsia N., Ahaltsov H., & Sokol S. (2019) Vibroseismic protection of heavy mining machines, buildings and structures. E3S Web of Conferences, 109, 00022. http://doi.org/10.1051/e3sconf/201910900022 27. Bulat A.F., Dyrda V.I., Lysytsya M.I. & Grebenyuk S.M. (2018). Numerical Simulation of the Stress-Strain State of Thin-Layer Rubber-Metal Vibration Absorber Elements Under Nonlinear Deformation. Strength of Materials, 50(3), pp.387–395. http://doi.org/10.1007/s11223-018-9982-9 28. Bulat A.F., Dyrda V.I., Grebenyuk S.N. & Klimenko M.I. (2019). Determination of effective characteristics of the fibrous viscoelastic composite with transversal and isotropic components. Strength of Materials, 51(2), pp.183-192. https://doi.org/10.1007/s11223-019-00064-x

Возврат к списку